All functions |
|
---|---|
Average posterior probability of assignment (APPA) |
|
Odds of correct classification (OCC) |
|
Weekly Mean PAP Therapy Usage of OSA Patients in the First 3 Months |
|
Biweekly Mean PAP Therapy Adherence of OSA Patients over 1 Year |
|
Convert lcMethod arguments to a list of atomic types |
|
Convert a list of lcMethod objects to a data.frame |
|
Generate a data.frame containing the argument values per method per row |
|
Convert a list of lcMethod objects to a lcMethods list |
|
Convert a list of lcModels to a lcModels list |
|
Extract the method arguments as a list |
|
Update the cluster names |
|
Get the cluster names |
|
Proportional size of each cluster |
|
Number of trajectories per cluster |
|
Extract cluster trajectories |
|
Extract lcModel coefficients |
|
|
|
Compute the posterior confusion matrix |
|
Check model convergence |
|
Create the test fold data for validation |
|
Create all k test folds from the training data |
|
Create the training data for each of the k models in k-fold cross validation evaluation |
|
Define an external metric for lcModels |
|
Define an internal metric for lcModels |
|
lcModel deviance |
|
Extract the residual degrees of freedom from a lcModel |
|
Estimation time |
|
Substitute the call arguments for their evaluated values |
|
|
Compute external model metric(s) |
|
|
Extract lcModel fitted values |
|
Extract the fitted trajectories |
|
Extract formula |
|
Extract the formula of a lcModel |
|
Generate longitudinal test data |
|
Default argument values for the given method specification |
|
Arguments to be excluded from the specification |
|
Get citation info |
|
Get the external metric definition |
|
Get the names of the available external metrics |
|
Get the internal metric definition |
|
Get the names of the available internal metrics |
|
Object label |
|
Get the method specification |
|
Object name |
|
Extract the trajectory identifier variable |
|
Get the trajectory ids on which the model was fitted |
|
Retrieve and evaluate a lcMethod argument by name |
|
lcMethod initialization |
|
|
lcMetaMethod abstract class |
High-level approaches to longitudinal clustering |
|
Longitudinal dataset representation |
|
Overview of |
|
Generics used by latrend for different classes |
|
Supported methods for longitudinal clustering |
|
Metrics |
|
latrend: A Framework for Clustering Longitudinal Data |
|
Parallel computation using latrend |
|
Cluster longitudinal data using the specified method |
|
Cluster longitudinal data for a list of method specifications |
|
Cluster longitudinal data using bootstrapping |
|
Cluster longitudinal data over k folds |
|
Artificial longitudinal dataset comprising three classes |
|
Cluster longitudinal data repeatedly |
|
lcApproxModel class |
|
Method fit modifiers |
|
lcMethod class |
|
Longitudinal cluster method ( |
|
Specify AKMedoids method |
|
Specify a zero-inflated repeated-measures GBTM method |
|
Specify time series clustering via dtwclust |
|
Feature-based clustering |
|
Method interface to flexmix() |
|
Group-based trajectory modeling using flexmix |
|
Specify a FunFEM method |
|
Specify a custom method based on a function |
|
Two-step clustering through latent growth curve modeling and k-means |
|
Specify a longitudinal k-means (KML) method |
|
Two-step clustering through linear regression modeling and k-means |
|
Specify GBTM method |
|
Specify GMM method using lcmm |
|
Longitudinal latent profile analysis |
|
Specify a GLMM iwht a normal mixture in the random effects |
|
Specify a MixTVEM |
|
Specify mixed mixture regression model using mixtools |
|
Specify non-parametric estimation for independent repeated measures |
|
Specify a random-partitioning method |
|
Specify a stratification method |
|
Generate a list of lcMethod objects |
|
|
|
Longitudinal cluster result ( |
|
Create a lcModel with pre-defined partitioning |
|
Create a lcModel with pre-defined weighted partitioning |
|
|
|
Construct a list of |
|
Extract the log-likelihood of a lcModel |
|
Select the lcModel with the highest metric value |
|
Compute internal model metric(s) |
|
Select the lcModel with the lowest metric value |
|
Extract the model data that was used for fitting |
|
Extract model training data |
|
Number of clusters |
|
Number of trajectories |
|
lcMethod argument names |
|
Number of observations used for the lcModel fit |
|
Plot a lcModel |
|
Grid plot for a list of models |
|
Plot cluster trajectories |
|
Plot the fitted trajectories |
|
Plot one or more internal metrics for all lcModels |
|
Plot the data trajectories |
|
|
|
Posterior probability per fitted trajectory |
|
Create a posterior probability matrix from a vector of cluster assignments. |
|
|
|
lcModel predictions |
|
Predict the cluster assignments for new trajectories |
|
Predict trajectories conditional on cluster membership |
|
Posterior probability for new data |
|
|
|
Print the arguments of an lcMethod object |
|
Print lcModels list concisely |
|
Quantile-quantile plot |
|
Extract lcModel residuals |
|
Extract response variable |
|
Extract residual standard deviation from a lcModel |
|
Reduce the memory footprint of an object for serialization |
|
Subsetting a lcModels list based on method arguments |
|
Summarize a lcModel |
|
Test the implementation of an lcMethod and associated lcModel subclasses |
|
Sampling times of a lcModel |
|
Extract the time variable |
|
Get the trajectories |
|
Get the cluster membership of each trajectory |
|
Helper function for custom lcModel classes implementing fitted.lcModel() |
|
Helper function for custom lcModel classes implementing predict.lcModel() |
|
Convert a multiple time series matrix to a data.frame |
|
Convert a longitudinal data.frame to a matrix |
|
Update a method specification |
|
Update a lcModel |
|
|
|
Sample an index of a vector weighted by the elements |