All functions

APPA()

Average posterior probability of assignment (APPA)

OCC()

Odds of correct classification (OCC)

PAP.adh

Weekly Mean PAP Therapy Usage of OSA Patients in the First 3 Months

PAP.adh1y

Biweekly Mean PAP Therapy Adherence of OSA Patients over 1 Year

as.data.frame(<lcMethod>)

Convert lcMethod arguments to a list of atomic types

as.data.frame(<lcMethods>)

Convert a list of lcMethod objects to a data.frame

as.data.frame(<lcModels>)

Generate a data.frame containing the argument values per method per row

as.lcMethods()

Convert a list of lcMethod objects to a lcMethods list

as.lcModels()

Convert a list of lcModels to a lcModels list

as.list(<lcMethod>)

Extract the method arguments as a list

`clusterNames<-`()

Update the cluster names

clusterNames()

Get the cluster names

clusterProportions()

Proportional size of each cluster

clusterSizes()

Number of trajectories per cluster

clusterTrajectories()

Extract cluster trajectories

coef(<lcModel>)

Extract lcModel coefficients

compose()

lcMethod estimation step: compose an lcMethod object

confusionMatrix()

Compute the posterior confusion matrix

converged()

Check model convergence

createTestDataFold()

Create the test fold data for validation

createTestDataFolds()

Create all k test folds from the training data

createTrainDataFolds()

Create the training data for each of the k models in k-fold cross validation evaluation

defineExternalMetric()

Define an external metric for lcModels

defineInternalMetric()

Define an internal metric for lcModels

deviance(<lcModel>)

lcModel deviance

df.residual(<lcModel>)

Extract the residual degrees of freedom from a lcModel

estimationTime()

Estimation time

evaluate(<lcMethod>)

Substitute the call arguments for their evaluated values

externalMetric(<lcModel>,<lcModel>) externalMetric(<lcModels>,<missing>) externalMetric(<lcModels>,<character>) externalMetric(<lcModels>,<lcModel>) externalMetric(<list>,<lcModel>)

Compute external model metric(s)

fit()

lcMethod estimation step: logic for fitting the method to the processed data

fitted(<lcModel>)

Extract lcModel fitted values

fittedTrajectories()

Extract the fitted trajectories

formula(<lcMethod>)

Extract formula

formula(<lcModel>)

Extract the formula of a lcModel

generateLongData()

Generate longitudinal test data

getArgumentDefaults()

Default argument values for the given method specification

getArgumentExclusions()

Arguments to be excluded from the specification

getCitation()

Get citation info

getExternalMetricDefinition()

Get the external metric definition

getExternalMetricNames()

Get the names of the available external metrics

getInternalMetricDefinition()

Get the internal metric definition

getInternalMetricNames()

Get the names of the available internal metrics

getLabel()

Object label

getLcMethod()

Get the method specification

getName() getShortName()

Object name

idVariable()

Extract the trajectory identifier variable

ids()

Get the trajectory ids on which the model was fitted

`$`(<lcMethod>) `[[`(<lcMethod>)

Retrieve and evaluate a lcMethod argument by name

initialize(<lcMethod>)

lcMethod initialization

compose(<lcMetaMethod>) getLcMethod(<lcMetaMethod>) getName(<lcMetaMethod>) getShortName(<lcMetaMethod>) idVariable(<lcMetaMethod>) preFit(<lcMetaMethod>) prepareData(<lcMetaMethod>) fit(<lcMetaMethod>) postFit(<lcMetaMethod>) responseVariable(<lcMetaMethod>) timeVariable(<lcMetaMethod>) validate(<lcMetaMethod>) update(<lcMetaMethod>) fit(<lcFitConverged>) validate(<lcFitConverged>) fit(<lcFitRep>) validate(<lcFitRep>)

lcMetaMethod abstract class

latrend-approaches

High-level approaches to longitudinal clustering

latrend-data

Longitudinal dataset representation

latrend-estimation

Overview of lcMethod estimation functions

latrend-generics

Generics used by latrend for different classes

latrend-methods

Supported methods for longitudinal clustering

latrend-metrics

Metrics

latrend-package

latrend: A Framework for Clustering Longitudinal Data

latrend-parallel

Parallel computation using latrend

latrend()

Cluster longitudinal data using the specified method

latrendBatch()

Cluster longitudinal data for a list of method specifications

latrendBoot()

Cluster longitudinal data using bootstrapping

latrendCV()

Cluster longitudinal data over k folds

latrendData

Artificial longitudinal dataset comprising three classes

latrendRep()

Cluster longitudinal data repeatedly

fitted(<lcApproxModel>) predictForCluster(<lcApproxModel>)

lcApproxModel class

lcFitConverged() lcFitRep() lcFitRepMin() lcFitRepMax()

Method fit modifiers

lcMethod-class lcMethod

lcMethod class

lcMethod-estimation latrend-procedure lcMethod-steps

Longitudinal cluster method (lcMethod) estimation procedure

lcMethodAkmedoids()

Specify AKMedoids method

lcMethodCrimCV()

Specify a zero-inflated repeated-measures GBTM method

lcMethodDtwclust()

Specify time series clustering via dtwclust

lcMethodFeature()

Feature-based clustering

lcMethodFlexmix()

Method interface to flexmix()

lcMethodFlexmixGBTM()

Group-based trajectory modeling using flexmix

lcMethodFunFEM()

Specify a FunFEM method

lcMethodFunction()

Specify a custom method based on a function

lcMethodGCKM()

Two-step clustering through latent growth curve modeling and k-means

lcMethodKML()

Specify a longitudinal k-means (KML) method

lcMethodLMKM()

Two-step clustering through linear regression modeling and k-means

lcMethodLcmmGBTM()

Specify GBTM method

lcMethodLcmmGMM()

Specify GMM method using lcmm

lcMethodMclustLLPA()

Longitudinal latent profile analysis

lcMethodMixAK_GLMM()

Specify a GLMM iwht a normal mixture in the random effects

lcMethodMixTVEM()

Specify a MixTVEM

lcMethodMixtoolsGMM()

Specify mixed mixture regression model using mixtools

lcMethodMixtoolsNPRM()

Specify non-parametric estimation for independent repeated measures

lcMethodRandom()

Specify a random-partitioning method

lcMethodStratify()

Specify a stratification method

lcMethods()

Generate a list of lcMethod objects

lcModel-class

lcModel class

lcModel

Longitudinal cluster result (lcModel)

lcModelPartition()

Create a lcModel with pre-defined partitioning

lcModelWeightedPartition()

Create a lcModel with pre-defined weighted partitioning

lcModels-class

lcModels: a list of lcModel objects

lcModels()

Construct a list of lcModel objects

logLik(<lcModel>)

Extract the log-likelihood of a lcModel

max(<lcModels>)

Select the lcModel with the highest metric value

metric()

Compute internal model metric(s)

min(<lcModels>)

Select the lcModel with the lowest metric value

model.data(<lcModel>)

Extract the model data that was used for fitting

model.frame(<lcModel>)

Extract model training data

nClusters()

Number of clusters

nIds()

Number of trajectories

length(<lcMethod>) names(<lcMethod>)

lcMethod argument names

nobs(<lcModel>)

Number of observations used for the lcModel fit

plot(<lcModel>,<ANY>)

Plot a lcModel

plot(<lcModels>,<ANY>)

Grid plot for a list of models

plotClusterTrajectories()

Plot cluster trajectories

plotFittedTrajectories()

Plot the fitted trajectories

plotMetric()

Plot one or more internal metrics for all lcModels

plotTrajectories()

Plot the data trajectories

postFit()

lcMethod estimation step: logic for post-processing the fitted lcModel

postprob()

Posterior probability per fitted trajectory

postprobFromAssignments()

Create a posterior probability matrix from a vector of cluster assignments.

preFit()

lcMethod estimation step: method preparation logic

predict(<lcModel>)

lcModel predictions

predictAssignments()

Predict the cluster assignments for new trajectories

predictForCluster()

Predict trajectories conditional on cluster membership

predictPostprob()

Posterior probability for new data

prepareData()

lcMethod estimation step: logic for preparing the training data

print(<lcMethod>)

Print the arguments of an lcMethod object

print(<lcModels>)

Print lcModels list concisely

qqPlot()

Quantile-quantile plot

residuals(<lcModel>)

Extract lcModel residuals

responseVariable()

Extract response variable

sigma(<lcModel>)

Extract residual standard deviation from a lcModel

strip()

Reduce the memory footprint of an object for serialization

subset(<lcModels>)

Subsetting a lcModels list based on method arguments

summary(<lcModel>)

Summarize a lcModel

test.latrend()

Test the implementation of an lcMethod and associated lcModel subclasses

time(<lcModel>)

Sampling times of a lcModel

timeVariable()

Extract the time variable

trajectories()

Get the trajectories

trajectoryAssignments()

Get the cluster membership of each trajectory

transformFitted()

Helper function for custom lcModel classes implementing fitted.lcModel()

transformPredict()

Helper function for custom lcModel classes implementing predict.lcModel()

tsframe() meltRepeatedMeasures()

Convert a multiple time series matrix to a data.frame

tsmatrix() dcastRepeatedMeasures()

Convert a longitudinal data.frame to a matrix

update(<lcMethod>)

Update a method specification

update(<lcModel>)

Update a lcModel

validate()

lcMethod estimation step: method argument validation logic

which.weight()

Sample an index of a vector weighted by the elements