R/generics.R
, R/method.R
, R/model.R
strip.Rd
Reduce the (serialized) memory footprint of an object.
strip(object, ...)
# S4 method for class 'lcMethod'
strip(object, ..., classes = "formula")
# S4 method for class 'ANY'
strip(object, ..., classes = "formula")
# S4 method for class 'lcModel'
strip(object, ..., classes = "formula")
The stripped (i.e., updated) object.
Serializing references to environments results in the serialization of the object together with any associated environments and references. This method removes those environments and references, greatly reducing the serialized object size.
Classes extending lcModel
can override this method to remove additional non-essentials.
setMethod("strip", "lcModelExt", function(object, ..., classes = "formula") {
object <- callNextMethod()
# further process the object
return(object)
})
Other lcModel functions:
clusterNames()
,
clusterProportions()
,
clusterSizes()
,
clusterTrajectories()
,
coef.lcModel()
,
converged()
,
deviance.lcModel()
,
df.residual.lcModel()
,
estimationTime()
,
externalMetric()
,
fitted.lcModel()
,
fittedTrajectories()
,
getCall.lcModel()
,
getLcMethod()
,
ids()
,
lcModel-class
,
metric()
,
model.frame.lcModel()
,
nClusters()
,
nIds()
,
nobs.lcModel()
,
plot-lcModel-method
,
plotClusterTrajectories()
,
plotFittedTrajectories()
,
postprob()
,
predict.lcModel()
,
predictAssignments()
,
predictForCluster()
,
predictPostprob()
,
qqPlot()
,
residuals.lcModel()
,
sigma.lcModel()
,
time.lcModel()
,
trajectoryAssignments()
data(latrendData)
method <- lcMethodLMKM(Y ~ Time, id = "Id", time = "Time")
model <- latrend(method, latrendData)
newModel <- strip(model)