Get the posterior probability matrix with element \((i,j)\) indicating the probability of trajectory \(i\) belonging to cluster \(j\).
postprob(object, ...)
# S4 method for class 'lcModel'
postprob(object, ...)
An I-by-K numeric matrix
with I = nIds(object)
and K = nClusters(object)
.
This method should be extended by lcModel
implementations. The default implementation returns uniform probabilities for all observations.
Classes extending lcModel
should override this method.
setMethod("postprob", "lcModelExt", function(object, ...) {
# return trajectory-specific posterior probability matrix
})
If you are getting errors about undefined model signatures when calling postprob(model), check whether the postprob() function is still the one defined by the latrend package. It may have been overridden when attaching another package (e.g., lcmm). If you need to attach conflicting packages, load them first.
trajectoryAssignments predictPostprob predictAssignments
Other lcModel functions:
clusterNames()
,
clusterProportions()
,
clusterSizes()
,
clusterTrajectories()
,
coef.lcModel()
,
converged()
,
deviance.lcModel()
,
df.residual.lcModel()
,
estimationTime()
,
externalMetric()
,
fitted.lcModel()
,
fittedTrajectories()
,
getCall.lcModel()
,
getLcMethod()
,
ids()
,
lcModel-class
,
metric()
,
model.frame.lcModel()
,
nClusters()
,
nIds()
,
nobs.lcModel()
,
plot-lcModel-method
,
plotClusterTrajectories()
,
plotFittedTrajectories()
,
predict.lcModel()
,
predictAssignments()
,
predictForCluster()
,
predictPostprob()
,
qqPlot()
,
residuals.lcModel()
,
sigma.lcModel()
,
strip()
,
time.lcModel()
,
trajectoryAssignments()
data(latrendData)
method <- lcMethodLMKM(Y ~ Time, id = "Id", time = "Time")
model <- latrend(method, latrendData)
postprob(model)
#> A B
#> [1,] 1 0
#> [2,] 1 0
#> [3,] 1 0
#> [4,] 1 0
#> [5,] 1 0
#> [6,] 1 0
#> [7,] 1 0
#> [8,] 1 0
#> [9,] 1 0
#> [10,] 1 0
#> [11,] 1 0
#> [12,] 1 0
#> [13,] 1 0
#> [14,] 1 0
#> [15,] 1 0
#> [16,] 1 0
#> [17,] 1 0
#> [18,] 1 0
#> [19,] 1 0
#> [20,] 1 0
#> [21,] 1 0
#> [22,] 1 0
#> [23,] 1 0
#> [24,] 1 0
#> [25,] 1 0
#> [26,] 1 0
#> [27,] 1 0
#> [28,] 1 0
#> [29,] 1 0
#> [30,] 1 0
#> [31,] 1 0
#> [32,] 1 0
#> [33,] 1 0
#> [34,] 1 0
#> [35,] 1 0
#> [36,] 1 0
#> [37,] 1 0
#> [38,] 1 0
#> [39,] 1 0
#> [40,] 1 0
#> [41,] 1 0
#> [42,] 1 0
#> [43,] 1 0
#> [44,] 1 0
#> [45,] 1 0
#> [46,] 1 0
#> [47,] 1 0
#> [48,] 1 0
#> [49,] 1 0
#> [50,] 1 0
#> [51,] 1 0
#> [52,] 1 0
#> [53,] 1 0
#> [54,] 1 0
#> [55,] 1 0
#> [56,] 1 0
#> [57,] 1 0
#> [58,] 1 0
#> [59,] 1 0
#> [60,] 1 0
#> [61,] 1 0
#> [62,] 1 0
#> [63,] 1 0
#> [64,] 1 0
#> [65,] 1 0
#> [66,] 1 0
#> [67,] 1 0
#> [68,] 1 0
#> [69,] 1 0
#> [70,] 1 0
#> [71,] 1 0
#> [72,] 1 0
#> [73,] 1 0
#> [74,] 1 0
#> [75,] 1 0
#> [76,] 1 0
#> [77,] 1 0
#> [78,] 1 0
#> [79,] 1 0
#> [80,] 1 0
#> [81,] 0 1
#> [82,] 0 1
#> [83,] 0 1
#> [84,] 0 1
#> [85,] 0 1
#> [86,] 0 1
#> [87,] 0 1
#> [88,] 0 1
#> [89,] 0 1
#> [90,] 0 1
#> [91,] 0 1
#> [92,] 0 1
#> [93,] 0 1
#> [94,] 0 1
#> [95,] 0 1
#> [96,] 0 1
#> [97,] 0 1
#> [98,] 0 1
#> [99,] 0 1
#> [100,] 0 1
#> [101,] 0 1
#> [102,] 0 1
#> [103,] 0 1
#> [104,] 0 1
#> [105,] 0 1
#> [106,] 0 1
#> [107,] 0 1
#> [108,] 0 1
#> [109,] 0 1
#> [110,] 0 1
#> [111,] 0 1
#> [112,] 0 1
#> [113,] 0 1
#> [114,] 0 1
#> [115,] 0 1
#> [116,] 0 1
#> [117,] 0 1
#> [118,] 0 1
#> [119,] 0 1
#> [120,] 0 1
#> [121,] 0 1
#> [122,] 0 1
#> [123,] 0 1
#> [124,] 0 1
#> [125,] 0 1
#> [126,] 0 1
#> [127,] 0 1
#> [128,] 0 1
#> [129,] 0 1
#> [130,] 0 1
#> [131,] 0 1
#> [132,] 0 1
#> [133,] 0 1
#> [134,] 0 1
#> [135,] 0 1
#> [136,] 0 1
#> [137,] 0 1
#> [138,] 0 1
#> [139,] 0 1
#> [140,] 0 1
#> [141,] 0 1
#> [142,] 0 1
#> [143,] 0 1
#> [144,] 0 1
#> [145,] 0 1
#> [146,] 0 1
#> [147,] 0 1
#> [148,] 0 1
#> [149,] 0 1
#> [150,] 0 1
#> [151,] 0 1
#> [152,] 0 1
#> [153,] 0 1
#> [154,] 0 1
#> [155,] 0 1
#> [156,] 0 1
#> [157,] 0 1
#> [158,] 0 1
#> [159,] 0 1
#> [160,] 0 1
#> [161,] 0 1
#> [162,] 0 1
#> [163,] 0 1
#> [164,] 0 1
#> [165,] 0 1
#> [166,] 0 1
#> [167,] 0 1
#> [168,] 0 1
#> [169,] 0 1
#> [170,] 0 1
#> [171,] 0 1
#> [172,] 0 1
#> [173,] 0 1
#> [174,] 0 1
#> [175,] 0 1
#> [176,] 0 1
#> [177,] 0 1
#> [178,] 0 1
#> [179,] 0 1
#> [180,] 0 1
#> [181,] 0 1
#> [182,] 0 1
#> [183,] 0 1
#> [184,] 0 1
#> [185,] 0 1
#> [186,] 0 1
#> [187,] 0 1
#> [188,] 0 1
#> [189,] 0 1
#> [190,] 0 1
#> [191,] 0 1
#> [192,] 0 1
#> [193,] 0 1
#> [194,] 0 1
#> [195,] 0 1
#> [196,] 0 1
#> [197,] 0 1
#> [198,] 0 1
#> [199,] 0 1
#> [200,] 0 1
if (rlang::is_installed("lcmm")) {
gmmMethod = lcMethodLcmmGMM(
fixed = Y ~ Time,
mixture = ~ Time,
id = "Id",
time = "Time",
idiag = TRUE,
nClusters = 2
)
gmmModel <- latrend(gmmMethod, data = latrendData)
postprob(gmmModel)
}
#> A B
#> 1 2.547309e-17 1.000000e+00
#> 2 5.411522e-22 1.000000e+00
#> 3 3.041642e-19 1.000000e+00
#> 4 2.235736e-20 1.000000e+00
#> 5 8.499348e-10 1.000000e+00
#> 6 1.428899e-22 1.000000e+00
#> 7 7.217099e-20 1.000000e+00
#> 8 4.601011e-22 1.000000e+00
#> 9 2.465789e-18 1.000000e+00
#> 10 1.487810e-17 1.000000e+00
#> 11 4.431033e-18 1.000000e+00
#> 12 1.048311e-23 1.000000e+00
#> 13 1.624114e-19 1.000000e+00
#> 14 8.535574e-17 1.000000e+00
#> 15 9.154080e-19 1.000000e+00
#> 16 2.775977e-20 1.000000e+00
#> 17 3.751780e-19 1.000000e+00
#> 18 1.074618e-14 1.000000e+00
#> 19 3.429499e-19 1.000000e+00
#> 20 5.383558e-18 1.000000e+00
#> 21 8.954243e-15 1.000000e+00
#> 22 8.071920e-17 1.000000e+00
#> 23 3.636239e-18 1.000000e+00
#> 24 5.106287e-20 1.000000e+00
#> 25 3.644339e-17 1.000000e+00
#> 26 1.171056e-21 1.000000e+00
#> 27 1.186961e-19 1.000000e+00
#> 28 1.506209e-14 1.000000e+00
#> 29 5.704580e-19 1.000000e+00
#> 30 5.336798e-19 1.000000e+00
#> 31 1.202215e-17 1.000000e+00
#> 32 1.410158e-12 1.000000e+00
#> 33 1.841029e-16 1.000000e+00
#> 34 1.571870e-21 1.000000e+00
#> 35 2.531197e-23 1.000000e+00
#> 36 1.134933e-21 1.000000e+00
#> 37 8.624020e-20 1.000000e+00
#> 38 8.734216e-18 1.000000e+00
#> 39 3.199024e-20 1.000000e+00
#> 40 1.589164e-15 1.000000e+00
#> 41 6.669018e-21 1.000000e+00
#> 42 1.013342e-18 1.000000e+00
#> 43 7.838956e-18 1.000000e+00
#> 44 9.027838e-15 1.000000e+00
#> 45 4.032962e-18 1.000000e+00
#> 46 1.606951e-13 1.000000e+00
#> 47 1.326813e-15 1.000000e+00
#> 48 6.837974e-17 1.000000e+00
#> 49 1.112480e-18 1.000000e+00
#> 50 5.127967e-18 1.000000e+00
#> 51 6.227700e-20 1.000000e+00
#> 52 5.071706e-22 1.000000e+00
#> 53 1.910355e-16 1.000000e+00
#> 54 1.315540e-15 1.000000e+00
#> 55 1.489717e-20 1.000000e+00
#> 56 3.086665e-17 1.000000e+00
#> 57 1.051878e-14 1.000000e+00
#> 58 2.876305e-21 1.000000e+00
#> 59 1.715890e-19 1.000000e+00
#> 60 1.321604e-15 1.000000e+00
#> 61 9.535077e-18 1.000000e+00
#> 62 9.190271e-20 1.000000e+00
#> 63 2.424449e-16 1.000000e+00
#> 64 7.904951e-23 1.000000e+00
#> 65 1.599877e-22 1.000000e+00
#> 66 2.884337e-19 1.000000e+00
#> 67 6.949903e-17 1.000000e+00
#> 68 1.967578e-14 1.000000e+00
#> 69 1.408407e-17 1.000000e+00
#> 70 3.518169e-15 1.000000e+00
#> 71 2.106024e-17 1.000000e+00
#> 72 2.756480e-16 1.000000e+00
#> 73 4.318563e-15 1.000000e+00
#> 74 1.844605e-23 1.000000e+00
#> 75 1.737188e-17 1.000000e+00
#> 76 1.314989e-21 1.000000e+00
#> 77 6.142480e-13 1.000000e+00
#> 78 2.824823e-19 1.000000e+00
#> 79 4.868013e-15 1.000000e+00
#> 80 1.192237e-17 1.000000e+00
#> 81 9.999999e-01 5.541483e-08
#> 82 1.000000e+00 1.687982e-09
#> 83 1.000000e+00 1.237469e-08
#> 84 1.000000e+00 2.646910e-11
#> 85 1.000000e+00 2.743526e-11
#> 86 1.000000e+00 2.225112e-12
#> 87 1.000000e+00 3.498192e-09
#> 88 1.000000e+00 3.840670e-10
#> 89 1.000000e+00 4.912743e-09
#> 90 1.000000e+00 4.347079e-10
#> 91 1.000000e+00 6.570054e-11
#> 92 1.000000e+00 9.025892e-10
#> 93 1.000000e+00 7.647599e-11
#> 94 1.000000e+00 2.499976e-10
#> 95 1.000000e+00 1.745679e-08
#> 96 1.000000e+00 3.376375e-10
#> 97 1.000000e+00 7.724647e-09
#> 98 1.000000e+00 3.138129e-09
#> 99 1.000000e+00 7.196848e-09
#> 100 1.000000e+00 3.432416e-09
#> 101 1.000000e+00 3.378190e-11
#> 102 1.000000e+00 6.094949e-10
#> 103 1.000000e+00 3.903088e-10
#> 104 1.000000e+00 1.463033e-09
#> 105 1.000000e+00 3.266176e-08
#> 106 9.999997e-01 2.691745e-07
#> 107 1.000000e+00 2.165185e-10
#> 108 1.000000e+00 4.417720e-08
#> 109 1.000000e+00 2.613364e-10
#> 110 1.000000e+00 1.855565e-10
#> 111 1.000000e+00 1.247697e-08
#> 112 9.999999e-01 1.177873e-07
#> 113 1.000000e+00 2.975804e-09
#> 114 1.000000e+00 1.558266e-09
#> 115 1.000000e+00 1.849239e-09
#> 116 1.000000e+00 1.031145e-09
#> 117 1.000000e+00 7.985078e-10
#> 118 1.000000e+00 4.550104e-09
#> 119 1.000000e+00 4.156114e-10
#> 120 1.000000e+00 3.206136e-10
#> 121 1.000000e+00 2.233346e-08
#> 122 9.999999e-01 8.120601e-08
#> 123 1.000000e+00 5.954044e-10
#> 124 1.000000e+00 3.026458e-11
#> 125 1.000000e+00 1.424766e-09
#> 126 1.000000e+00 8.130364e-10
#> 127 1.000000e+00 6.150024e-10
#> 128 1.000000e+00 9.444138e-09
#> 129 1.000000e+00 2.328948e-11
#> 130 1.000000e+00 1.563133e-09
#> 131 1.000000e+00 7.070482e-12
#> 132 1.000000e+00 2.430530e-12
#> 133 1.000000e+00 1.825761e-09
#> 134 1.000000e+00 6.650521e-09
#> 135 1.000000e+00 1.370103e-11
#> 136 1.000000e+00 1.025182e-09
#> 137 1.000000e+00 1.227042e-09
#> 138 1.000000e+00 2.044575e-09
#> 139 1.000000e+00 5.253970e-09
#> 140 1.000000e+00 3.989508e-08
#> 141 1.000000e+00 6.667898e-10
#> 142 1.000000e+00 6.031687e-11
#> 143 1.000000e+00 9.281413e-11
#> 144 1.000000e+00 3.580572e-09
#> 145 1.000000e+00 5.328300e-13
#> 146 1.000000e+00 2.029222e-12
#> 147 1.000000e+00 3.769147e-09
#> 148 1.000000e+00 2.288466e-09
#> 149 1.000000e+00 1.052566e-08
#> 150 1.000000e+00 3.274686e-08
#> 151 1.000000e+00 2.471732e-26
#> 152 1.000000e+00 8.469882e-29
#> 153 1.000000e+00 1.695607e-31
#> 154 1.000000e+00 1.193504e-30
#> 155 1.000000e+00 8.066766e-25
#> 156 1.000000e+00 3.073320e-26
#> 157 1.000000e+00 1.101321e-34
#> 158 1.000000e+00 2.275016e-31
#> 159 1.000000e+00 2.911821e-35
#> 160 1.000000e+00 2.330361e-32
#> 161 1.000000e+00 1.275205e-41
#> 162 1.000000e+00 3.527564e-25
#> 163 1.000000e+00 5.453888e-33
#> 164 1.000000e+00 5.219841e-32
#> 165 1.000000e+00 4.904099e-30
#> 166 1.000000e+00 4.439443e-29
#> 167 1.000000e+00 1.565171e-28
#> 168 1.000000e+00 4.165055e-28
#> 169 1.000000e+00 7.260726e-33
#> 170 1.000000e+00 2.191088e-36
#> 171 1.000000e+00 1.604883e-33
#> 172 1.000000e+00 7.948705e-31
#> 173 1.000000e+00 2.416388e-34
#> 174 1.000000e+00 2.302697e-31
#> 175 1.000000e+00 1.701660e-35
#> 176 1.000000e+00 1.088227e-32
#> 177 1.000000e+00 4.202725e-30
#> 178 1.000000e+00 2.132957e-32
#> 179 1.000000e+00 1.985949e-32
#> 180 1.000000e+00 2.624164e-24
#> 181 1.000000e+00 1.952052e-29
#> 182 1.000000e+00 6.747480e-26
#> 183 1.000000e+00 7.691045e-35
#> 184 1.000000e+00 2.337360e-30
#> 185 1.000000e+00 3.671426e-27
#> 186 1.000000e+00 1.975783e-30
#> 187 1.000000e+00 2.035570e-39
#> 188 1.000000e+00 4.969321e-28
#> 189 1.000000e+00 4.456556e-38
#> 190 1.000000e+00 1.971674e-33
#> 191 1.000000e+00 5.329904e-25
#> 192 1.000000e+00 1.312493e-29
#> 193 1.000000e+00 1.176425e-25
#> 194 1.000000e+00 3.285059e-31
#> 195 1.000000e+00 5.007539e-31
#> 196 1.000000e+00 7.281392e-36
#> 197 1.000000e+00 5.466925e-24
#> 198 1.000000e+00 4.488509e-31
#> 199 1.000000e+00 4.130772e-33
#> 200 1.000000e+00 5.307268e-28